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Abstract

Parsing Chinese critically depends on cor-
rect word segmentation for the parser since
incorrect segmentation inevitably causes
incorrect parses. We investigate a pipeline
approach to segmentation and parsing us-
ing word lattices as parser input. We com-
pare CRF-based and lexicon-based ap-
proaches to word segmentation. Our re-
sults show that the lattice parser is capa-
ble of selecting the correction segmenta-
tion from thousands of options, thus dras-
tically reducing the number of unparsed
sentence. Lexicon-based parsing mod-
els have a better coverage than the CRF-
based approach, but the many options are
more difficult to handle. We reach our
best result by using a lexicon from the n-
best CRF analyses, combined with highly
probable words.

1 Introduction

Many Asian languages, such as Chinese, Korean,
and Burmese, do not mark word boundaries with
spaces, in contrast to Indo-European languages
such as English. Traditionally, parsing is preceded
by word segmentation in a pipeline model. That
is, the segmenter provides the most likely seg-
mentation, which is subsequently passed to the
parser, resulting in a propagation of errors from
any initial incorrect segmentation. Previous work
has demonstrated that performing segmentation
and POS tagging jointly improves results (Ng and
Low, 2004; Zhang and Clark, 2008; Forst and
Fang, 2009), but results in a standard pipeline
approach to segmentation and POS tagging have
been mixed at best (Jiang et al., 2009).

The interaction between segmentation and un-
lexicalized constituent parsing for Chinese has not

been fully explored. Whereas segmentation is per-
formed on a character level, unlexicalized parsing
is based on POS tags. Consequently, there can
be a disconnect between the most likely charac-
ter segmentation and the optimal POS sequence
to fit the grammar. If the parser is given multi-
ple segmentations from which to select, it is un-
clear how consistently and accurately it is able to
select the correct segmentation combined with the
correct POS sequence. One inherent difficulty is
that the most probable segmentation may not ac-
tually be the optimal segmentation for the parser,
particularly for an unlexicalized parser, since seg-
mentation is done on the character level. Different
segmentations may result in completely different
sequences of POS tags, resulting in an alteration
of the syntactic structure of the sentence that the
parser must fit within its grammar.

We investigate a pipeline model where the seg-
menter provides n-best solutions, and the con-
stituent parser decides on the best segmentation
for POS tagging and parsing. I.e., we approach
Chinese parsing as similar to morphologically
rich languages (MRLs) of Hebrew and Arabic, in
which lattice inputs have been used to provide the
parser with options from which it chooses the best
possible segmentation and morphological analy-
sis. All experiments are based on the Penn Chi-
nese Treebank CTB5 (Xue et al., 2005).

The paper is structured as follows: We present
an overview of related work in sec. 2 and a de-
scription of the non-deterministic segmenters in
sec. 3. We discuss the experimental setup and re-
sults plus error analysis in sec. 4 and 5.

2 Related Work

2.1 Word Segmentation

Various approaches to word segmentation have
been developed, often during the ACL-SIGHAN
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segmentation bake-offs (e.g. Sproat and Emerson,
2003; Emerson, 2005)1. In the bake-offs, vari-
ants of the maximum-length matching algorithm
have traditionally been used to establish a base-
line for segmentation (Levow, 2006), but more
recent approaches have implemented various ma-
chine learning algorithms, treating word segmen-
tation as a character sequence labeling task, where
each character is given a tag that indicates the posi-
tion of the character in a word (Xue, 2003; Tseng
et al., 2005; Zhao and Kit, 2008, among others).
Xue (2003) first employed a Maximum Entropy
model to perform character labeling, with charac-
ter unigrams and bigrams and previous labels as
features. Later models also used other machine
learning tools, most commonly Conditional Ran-
dom Field (CRF) (e.g. Zhao et al., 2010; Qian
and Liu, 2012). Common features include char-
acter types (Zhao et al., 2010), morphological in-
formation (Tseng et al., 2005), etc. Word-based F-
measures for segmentation of state of the art sys-
tems are very high, ranging from 95% to 98%.

2.2 Chinese Parsing

Statistical parsing of Chinese has been approached
in many different ways, yielding numerous sys-
tems, some Chinese specific. The highest achieved
results, to our knowledge, on the Chinese tree-
bank using standard PARSEVAL metrics is 86.6F

achieved by (Wang and Xue, 2014) using a joint
POS tagging transition-based constituency parser
that incorporates non-local and semi-supervised
features using gold segmentation.

Qian and Liu (2012) use a joint system that is an
extension of the CYK algorithm achieving 84.13F

using gold segmentation of words, 81.76F in a
pipeline, and 82.85F for their joint system that in-
cludes: segmentation, POS tagging, and parsing.
Brackets were only counted as correct if bound-
aries, label, and segmentation were correct, but
this is not directly comparable to standard PAR-
SEVAL metrics, but akin to CParseval (Harper and
Huang, 2011).

Successful parsing in a pipeline hinges on the
accuracy of the predicted segmentation. Un-
less the segmentation accuracy is almost 100%
(99.9% as suggested by Sun (1999)), passing sev-
eral segmentations to a downstream application
may help resolve ambiguities. Forst and Fang
(2009) showed that by applying non-deterministic

1http://sighan.cs.uchicago.edu/

segmentation and POS tagging, sentence level
segmentation accuracy increases from 47.15% to
65.06%, and passing multiple analyses to an LFG
parser increased the accuracy of parseable sen-
tences.

Although Chinese lacks substantial morphol-
ogy, the problem of identifying words is similar
to the need to segment words into syntactic units
in morphologically rich languages, which has im-
proved parser performance (Tsarfaty, 2006). Lat-
tice parsing (Chappelier et al., 1999) has been uti-
lized in PCFG parsing; it allows the parser to
determine the optimal path through all possible
analyses to produce a tree (Goldberg and Tsar-
faty, 2008). This technique has been applied to
both Hebrew (Cohen and Smith, 2007) and Ara-
bic (Green and Manning, 2010) with significant
improvements noted for Hebrew, as well as to re-
cover empty categories for both English and Chi-
nese (Cai et al., 2011).

Directly related work by Wang et al. (2013)
used the blatt parser, a modified PCFG-LA
parser that allows a lattice input, in a pipeline ap-
proach. They concluded that non-weighted lattices
are not effective for parsing Chinese. They devel-
oped a completely lattice-based system that uses a
lattice to pass information between analyses (e.g.
segmentation to POS tagging), improving results
over standard pipeline approaches in all steps.

3 Non-Deterministic Segmentation

3.1 CRF Segmentation

We train a CRF model (crf++2) due to its ability
to provide the n-best segmentations. We use a
standard feature template (see Table 1). Character
types are numbers, time (year, month, day, etc.),
English letters, punctuation, and other Chinese
characters. We use the 6-tag IOB scheme that per-
formed best in a comparison by Zhao et al. (2010):
S denotes a single-character word, B and E denote
characters at the beginning and end of a multi-
character word respectively. B2, B3 and M denote
characters in the middle of a multi-character word.
For example, the characters in进出口|总值|达|一
千零九十八点二亿|美元 (Eng.: The value of im-
port and export reaches 109.82 billion USD.) are
assigned the labels ‘B B1 E|B E|S|B B1 B2 M M
M M M E’.

2http://taku910.github.io/crfpp/
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Features
Unigram C−1 C0 C+1

Bigram C−1 C0 C0 C+1 C−1 C+1

Char. type type(C−1) type(C0) type(C+1)

Table 1: CRF Features (C−1: previous character, C0: current
character, C+1: next character).

3.2 Lexicon-Based Segmentation
The second approach to segmentation is lexicon-
based, using a Chinese word lexicon. Segmenta-
tion is approached as a search that finds all charac-
ter sequences that occur in the dictionary, return-
ing an unweighted lattice of all possible segmenta-
tions. We experiment with different types of input
for the parser:

Upper bound: In order to investigate the feasi-
bility of having the parser choose the correct seg-
mentation from the lattice, we first use the lexicon
extracted from the test set. This ensures full cover-
age with a minimal lexicon size, but is unrealistic.

Upper bound+Train: In this setting, we add the
words from the training set.

Trainn: In a more realistic setting, we extract
the lexicon from the training set. Thus, the lexi-
con is incomplete with regard to the test set. We
use heuristics to handle unknown words: For ev-
ery unknown segment in a test sentence, we add
the segment and a larger sequence of n (1–6) char-
acters to the left and right to the lexicon. The
maximal length of the context corresponds to the
longest word in the training data. For example, if
the sentence is 知识信息网络通讯技术和脱氧氧氧
核糖核酸生物技术(Eng.: information and web
technology and DNA biological technology) and
the character 氧 is not present in the lexicon, we
add 氧, 脱氧, 氧核, 和脱氧, 脱氧核 and 氧核
糖 to the lexicon when n = 3. Here the unknown
word 脱氧核糖核酸 (DNA) is of length 6, thus
we cover this unknown word only when n = 6.

Trainn+Names: Here, we add all person and
geographic names, as well as number and time re-
lated words from the test data, as gazetteers are
fairly easy to gather (c.f. e.g. Yu et al., 2008).

CRFn: Here we create a unique lexicon for each
sentence by extracting all words from the n-best
CRF analyses for that sentence (1 < n < 5).

We also experiment with extracting a lexicon
from the CRF analyses for all test sentences:

CRFnlex: We extract these lexicons from the n-
best analyses of the CRF segmenter (1 < n < 5).

CRFnlex+Train: We add all the words from the
training data to CRFnlex to increase coverage.

CRF1lex+HiProb: We take advantage of the
probability for any segmentation given by the CRF
segmenter. Recall that the CRF segmenter pro-
vides the sentence probability for each of the n-
best options. If the probability of a segmentation
is greater than a threshold, we add all the words
in that segmentation to the lexicon. By doing so,
we add a range of word hypotheses that the CRF
segmenter considers probable even though they
may not appear in the best segmentation. Non-
exhaustive experiments show that the probability
threshold 0.30 yields a balance between adding
new words to gain coverage and the parser’s abil-
ity to select the correct segmentation. This setting
results in 1901 words in the lexicon, and a reduc-
tion of unknown words.

CRF1lex+HiProb+Names+Single: We add
names, numbers, times, and all single charac-
ters to the lexicon since some single-character
words are not captured by the above lexicon.
For long sentences (>50 segments) whose best
segmentation has a probability <0.35, we extract
words from all 5 segmentations. Note that we
create individual lexicons for such low probability
analyses, by adding a few words that are relevant
for this specific sentence to the standard lexicon.

CRF1lex+HiProb+Names+Single+PKU:
Since we still have unknown words, we addition-
ally use the Peking University data (PKU) from
the 2nd International Bakeoff in Chinese Word
Segmentation (Emerson, 2005), which covers a
broader lexicon and thus may increase coverage,
but also increases the size of the lexicon, thus
making the parser’s task more difficult.

We add all words that only appear in the PKU
data. Since the segmentation decisions differ
between the PKU data and the CTB5, we use
a simple filtering method to include only the
words for which there is no annotation conflict.
For example, the sequence 事实上(事实=fact,
上=grammatical particle, Eng.: in fact) occurs in
the CRF analyses only as 事实|上, but in the
test data, the only occurrence is segmented as one
word, thus adding it from the PKU data reduces
the number of unknown words.
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System F
Jiang et al. (2009) 97.58
Jiang et al. (2009) w/ adaptation 98.23
Qian and Liu (2012) 97.85
Zhang and Clark (2011) 97.78
Our CRF model 97.70

Table 2: CRF segmentation results for the 1-best setting.

4 Experimental Setup

We extract the dictionaries and train the CRF
model on the Penn Chinese Treebank (CTB5)
(Xue et al., 2005), following the split of Qian and
Liu (2012): sections 001–270 and 400–1151 for
training, and sections 271-300 for testing. We
evaluate segmentation using the official evaluation
script from the 2nd International Bakeoff (Emer-
son, 2005). We report coverage and F-score. Cov-
erage is defined as the percentage of sentences
with the correct segmentation among the n-best
solutions.

For parsing, CTB5 is preprocessed using stan-
dard procedures (Harper and Huang, 2011): Func-
tion labels are deleted, unary nodes are collapsed,
and empty nodes are removed using the Berke-
ley Parser Analyser (Kummerfeld et al., 2013).
We use the blatt parser (Goldberg and Elhadad,
2011), which is a reimplementation of the Berke-
ley parser (Petrov et al., 2006; Petrov and Klein,
2007), modified to allow lattice input. The parser
uses a PCFG-LA (Matsuzaki et al., 2005; Petrov
et al., 2006) iterative algorithm that splits each
non-terminal category and determines if the split is
beneficial. Splits deemed non-beneficial are then
merged back together, and smoothing is performed
over the non-terminals towards a common ances-
tor, calculating the EM after each sequence. We
train four grammars using four different seeds (1–
4) and report averages (unless otherwise noted),
using the scorer from the 2013 SPMRL shared
task (Seddah et al., 2013), a reimplementation of
EVALB (Sekine and Collins, 1997) that allows for
the penalization of unparsed sentences by scoring
them as completely wrong.

5 Results

5.1 Segmentation Results

5.1.1 CRF Results
The results of our CRF segmenter are compared
to other systems in table 2. Our results are sim-

n-best # correct sent. Coverage
1-best 258 74.14%
2-best 296 85.06%
3-best 306 87.93%
4-best 311 89.37%
5-best 318 91.38%

Table 3: Coverage of the CRF n-best analyses.

ilar to state-of-the-art systems, i.e., a CRF seg-
menter with simple features already works very
well. However, table 3 shows that given an F-
score of >97%, less than 75% of the test sentences
are segmented completely correctly. As the CRF
segmenter produces more segmentations, cover-
age increases to 91.38% given the 5-best analyses.

5.1.2 Dictionary Segmentation Results
Table 4 gives an overview of the coverage and lex-
icon size of the individual methods. The number
of unknown words is the number of words from
the gold segmentation of the test set that do not
occur in the lexicon. Lexicon size refers to the
number of words in the lexicon that occur in the
test set. Both numbers give a more general view of
the coverage of a lexicon. The training set based
methods create much larger lexicons in compari-
son to the upper bound, but still have a low cover-
age of 67.53% even with the longest context (6).
We reach 76.15% if we include names, etc. The
CRF approach, which reaches a segmentation ac-
curacy close to the state of the art (see Table 2), has
a similarly low coverage of 74.14%. This shows
that a high performance in segmentation does not
directly translate into good parsing results. In-
terestingly, the lexicon extracted from the same
1-best CRF model performs better and reaches a
coverage of 79.02%. If we use all 5 segmentations
from the CRF to extract a lexicon, we reach a high
coverage of 93.07%, at a lexicon size that is simi-
lar to the one extracted form the training data.

Combining the CRFn lexicons with the words
from the training set gives a good coverage be-
tween 85.92% and 91.38%, but also increases the
size of the lexicon considerably. Adding highly
probable words from the CRF graph to CRF1lex
improves coverage by about 8 points, but it does
not reach the coverage of CRF5. Adding names
and single segments to the lexicon increases cover-
age by >5.5% absolute. We reach the highest cov-
erage of 94.83% by adding the PKU lexicon. Note
that this lexicon only adds 200 words on average,
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Lexicon % coverage # unk. words Lex. size
Upper bound 100.00 0 1829
Upper bound+Train 100.00 0 2888
Train1 56.03 263 2755
Train2 58.62 242 2888
Train6 67.53 185 4142
Train1+Names 72.99 162 2785
Train2+Names 75.29 147 2825
Train6+Names 76.15 140 3216
CRF1 74.14 102 1872
CRF2 85.06 50 2164
CRF5 91.38 27 2872
CRF1lex 79.02 102 1872
CRF2lex 89.66 50 2164
CRF5lex 93.97 27 2872
CRF1lex+Train 85.92 57 2926
CRF2lex+Train 91.38 36 3094
CRF5lex+Train 94.83 22 3595
CRF1lex+HiProb 81.90 89 1901
CRF1lex+HiProb+Names+Single 87.64 50 2878
CRF1lex+HiProb+Names+Single+PKU 94.83 19 3028+

Table 4: Coverage of different segmentation methods.

Wr. seg. F Rec. Prec.
No Penalty

Gold seg. 0 83.38 82.73 84.04
Upper bound 6.00 83.52 82.87 84.18
Upper+Train 41.25 84.81 84.23 85.39

With Penalty
Upper bound 6.00 82.07 80.07 84.18
Upper+Train 41.25 75.02 66.90 85.39

Table 5: Initial parsing results

but decreases the number of unknown words by
more than half.

5.2 Parsing Results

5.2.1 Initial Results
We establish an upper bound by using the gold
segmentation of the test sentences, i.e., a deter-
ministic input for the parser. We compare this to a
setting using gold standard information, where we
use the upper bound lexicon (based on gold seg-
mentations of the test sentences), and a more real-
istic setting that extracts the lexicon from the com-
bined training and test set. The results are shown
in table 5. Note that the standard EVALB met-
ric ignores sentences that have no parse or where
the words in the parser output do not match the
words in the gold standard. In our case, the latter
translates into sentence where the parser did not

choose the correct segmentation. We also present
an analysis where both unparsed sentences and
incorrectly segmented sentences are counted as
completely incorrect, which is overly harsh. We
address this issue in section 5.2.2.

The correct segmentation results in an F-score
of 83.38. If we present the parser with the upper
bound lexicon, the F-score increases minimally to
83.52. This means that the parser is capable of
selecting the correct segmentation from the lattice
in most cases. The increase in F is due to six in-
correctly segmented sentences per grammar/seed,
which are consequently ignored in the parser eval-
uation. Penalizing the parser (lower half of the ta-
ble) for incorrectly segmented sentences results in
a lower F-score of 82.07. When we use a lexi-
con based the upper bound+train, we achieve re-
sults of 84.81 and 75.02 respectively. Note that
neither score is very informative. However, we do
note that the number of incorrectly segmented sen-
tences increases dramatically when we use a more
realistic lexicon. We can conclude that the cre-
ation of the lexicon has a considerable influence
on parsing quality: We need to provide good cov-
erage without overwhelming the parser with too
many segmentation possibilities.

5.2.2 Corrected Evaluation
Here, we have a closer look at how evaluation
results are affected by either ignoring incorrectly
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F Rec. Prec.
Upper bound 85.14 84.68 85.60
Upper+penalty 76.23 68.71 85.60
Corrected 83.89 83.36 84.42

Table 6: Corrected results (seed 4).

segmented sentences or counting them as com-
pletely incorrect. We manually “correct” in-
correctly segmented sentences by replacing the
wrong tokens by the correct ones and deleting all
nodes that cover these tokens in the parses. Thus,
we keep the tree that is not affected by the in-
correct segmentation but remove the affected part
of the tree. As a consequence, recall should suf-
fer from the wrong segmentations while precision
should not be affected. This correction gives us
a better picture of how incorrect segmentation af-
fects results. Since it requires manual corrections,
the analysis is based on a seed of 4, which results
in four incorrectly segmented sentences.

Table 6 shows results for individual experiments
and settings. Penalizing the parser for an incor-
rect segment is overly harsh given that the F-Score
drops roughly 9% absolute for only four incorrect
sentences. The results on the corrected set show
higher results overall, i.e., the syntactic analyses
for those sentences are mostly correct.

5.2.3 Parsing based on Realistic
Segmentation

We have shown that the parser is able to select
the correct segmentation with a high level of ac-
curacy if it is present. Given that the gold lex-
icon is not representative of realistic data, we de-
termine experimentally whether the parser can still
perform at a consistently high accuracy with lexi-
cons created from more realistic data. Results are
shown in table 7. In the first setting, where we
extract the lexicon directly from the training data
and use a heuristic to cover unknown words, the
parser has difficulties determining the correct seg-
mentation, as evidenced by the high number of in-
correctly segmented sentences. Thus, while the
parsing results on correctly segmented sentences
(no penalty) are high, theF-scores with the penalty
are below 50. Adding names and time expressions
reduces the number of wrong segmentations and
increases the penalty F-scores by about 10 points.
Longer contexts do not seem to be useful.

The CRF results show lower numbers of wrong
segmentations and higher F-scores under penalty

if we keep the number of lattices low. Creating a
lexicon from the best CRF segmentation decreases
the number of incorrectly segmented sentence to
82 and increases the F-score slightly. Using the n-
best CRF analyses in any form is not useful. These
analyses increase the number of wrong segmenta-
tions (to 191.75 for CRF5, to 205.25 for CRF5lex
and CRF1lex+Train).

When we add the words from the training set to
the CRF1 lexicon, we slightly increase the num-
ber of incorrectly segmented sentences, which de-
creased F-scores. Adding the highly probable
words decreases the number of incorrectly seg-
mented sentences to 74.50. Also adding names,
times, and single characters to the lexicon de-
creases the number to 65.25, and adding the PKU
lexicon reaches the lowest number of 55.25, along
with the highest F-score with penalty: 70.69.

These results show clearly that simply increas-
ing the coverage of our lexicon, and thus the input
lattice of the parser, does not give us good segmen-
tation and parsing performance. Using the 5-best
CRF analyses, the lexicon based on those 5 anal-
yses, and the combination with training words all
result in good coverage, but provide unreliable in-
formation that does not allow the parser to choose
the correct segmentation in many cases. However,
adding words from highly likely analyses, and less
reliable hypotheses only when necessary, gives the
parser a good basis to make correct segmentation
decisions. Adding the 200 words from the PKU
lexicon helps in another 10 sentences. Thus, we
can conclude that the parser is able to select cor-
rect segmentations if we have a lexicon that bal-
ances quality and good coverage.

5.2.4 Error Analysis
We performed an error analysis for the best
setting (CRF1lex+HiProb+Names+Single+PKU),
both on the segmentation and the syntax level, us-
ing the grammar based on seed 4.

Segmentation. There are 54 incorrectly seg-
mented sentences. For 35 out of these, the cor-
rect segmentation is available in the lattice, but the
parser did not select it. When analyzing these sen-
tences, we found that in 32 cases, the parser se-
lects a segmentation that has fewer words than the
gold segmentation. I.e., the parser prefers analyses
with fewer words. In some cases, the wrong seg-
mentation makes sense linguistically, e.g., (NN全
文) (Eng.: full text) instead of the gold segmenta-
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Setting No penalty With penalty
Wrong seg. F Rec. Prec. F Rec. Prec.

Train1 172.25 88.41 87.80 89.04 47.23 32.14 89.04
Train2 163.25 88.17 87.65 88.70 49.30 34.14 88.70
Train6 168.50 88.58 88.01 89.17 48.02 32.87 89.17
Train1+Name 117.25 87.87 87.56 88.18 57.68 42.87 88.18
Train2+Name 109.25 87.63 87.34 87.91 59.21 44.63 87.91
Train6+Name 116.25 87.90 87.61 88.19 57.91 43.12 88.19
CRF1 90.00 85.56 85.32 85.79 63.05 49.83 85.79
CRF2 108.25 85.74 85.05 86.44 61.02 47.16 86.44
CRF5 191.75 85.93 85.32 86.53 41.48 27.28 86.53
CRF1lex 82.00 85.95 85.69 86.21 65.21 52.44 86.21
CRF2lex 110.00 85.64 84.90 86.40 60.59 46.66 86.40
CRF5lex 205.25 86.38 85.75 87.01 35.56 22.34 87.01
CRF1lex+Train 86.50 86.25 85.87 86.63 64.63 51.54 86.63
CRF2lex+Train 117.25 85.66 84.91 86.42 58.73 44.48 86.42
CRF5lex+Train 205.25 86.38 85.75 87.01 35.56 22.34 87.01
CRF1lex+HiProb 74.50 85.84 85.55 86.13 66.51 54.17 86.13
CRF1lex+HiProb+Names+Single 65.25 85.63 85.36 85.91 68.58 57.07 85.91
CRF1lex+HiProb+Names+Single+PKU 55.25 85.73 85.24 86.23 70.69 59.90 86.23

Table 7: Parsing results for the different input lattices.

Error type Count
NP → NP 20
non-NP → NP 20
non-NP → non-NP 10
NP → non-NP 15

Table 8: Top phrase errors in the best performing setting
(CRF1lex+HiProb+Names+Single+PKU).

tion (DP (DT全))(NP (NN文)), or (NP (NN交流
会)) (Eng.: a meeting to exchange ideas) instead
of (NN交流) (NN会).

Syntax. An analysis of the parses based on the
upper bound lexicon shows that the most com-
mon mistakes made on the 344 correctly seg-
mented sentences consists of frequently over-
generated nouns (NN), leading to NP-rich anal-
yses. The same pattern can be found in the
correctly segmented sentences from the best
setting (CRF1lex+HiProb+Names+Single+PKU).
The distribution of parsing errors is shown in ta-
ble 8. The analysis shows that we have 20 errors
of non-NP phrases becoming NPs. For example, a
VV retagged as NN causes a VP to become an NP.
We also find 20 cases where the parsed NP has the
wrong structure.

6 Conclusion & Future Work

We have shown that a pipeline approach to Chi-
nese parsing is feasible and beneficial, but it re-

quires a carefully selected lexicon to guide the
parser to make reliable segmentation choices.
While lattices from a CRF segmenter with state-
of-the-art performance do not allow the parser to
select good segmentations, using a lexicon care-
fully extracted from the n-best CRF analyses gives
the parser a good basis. The parser successfully
selects the correct segmentation when given the
option. The best performing lexicon consists of
the 1-best CRF analyses, along with highly prob-
able other analyses, names, dates, and words from
the PKU corpus. A lexicon extracted from the
CRF analyses has a higher coverage than using the
corresponding analyses directly, but analyses be-
yond the best analysis have a detrimental effect on
parsing, as the parser is biased towards its internal
POS tag preferences, which may not correspond
to the most probable segmentation.

We plan to extend our approach of creating in-
dividual lexicons per long sentence into a more
general approach where the lexicon for each sen-
tence is determined on an individual basis. We
will also investigate the interaction of segmenta-
tion and parsing when grammatical functions are
present. Preliminary experiments show that they
can help resolve segmentation and POS tagging
ambiguities, thus also increasing parsing accuracy.
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Aragües, and Antoine Rozenknop. 1999. Lattice
parsing for speech recognition. In Sixth Conference
sur le Traitement Automatique du Langage Naturel
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